Advancing life cycle sustainability of textiles through technological innovations

Micheal Johnson
  • Alberghini, M. et al. Sustainable polyethylene fabrics with engineered moisture transport for passive cooling. Nat. Sustain. 4, 715–724 (2021).

    Article 

    Google Scholar
     

  • Singh, R. P., Mishra, S. & Das, A. P. Synthetic microfibers: pollution toxicity and remediation. Chemosphere https://doi.org/10.1016/j.chemosphere.2020.127199 (2020).

  • Borrelle, S. B. et al. Why we need an international agreement on marine plastic pollution. Proc. Natl Acad. Sci. USA 114, 9994–9997 (2017).

    Article 
    CAS 

    Google Scholar
     

  • DelRe, C. et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592, 558–563 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sousa, A. F. et al. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym. Chem. 6, 5961–5983 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Z., Eriksson, M., Motte, H. D. L. & Adolfsson, E. Circular recycling of polyester textile waste using a sustainable catalyst. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2020.124579 (2021).

  • Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bataineh, K. M. Life-cycle assessment of recycling postconsumer high-density polyethylene and polyethylene terephthalate. Adv. Civil Eng. https://doi.org/10.1155/2020/8905431 (2020).

  • Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article 

    Google Scholar
     

  • Shieh, P. et al. Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 583, 542–547 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rahman, M. H. & Bhoi, P. R. An overview of non-biodegradable bioplastics. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.126218 (2021).

  • Cucina, M., de Nisi, P., Tambone, F. & Adani, F. The role of waste management in reducing bioplastics’ leakage into the environment: a review. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2021.125459 (2021).

  • Hufenus, R., Yan, Y., Dauner, M. & Kikutani, T. Melt-spun fibers for textile applications. Materials 13, 4298 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Poly(lactic acid) fibers, yarns and fabrics: manufacturing, properties and applications. Text. Res. J. 91, 1641–1669 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kopf, S., Åkesson, D. & Skrifvars, M. Textile fiber production of biopolymers—a review of spinning techniques for polyhydroxyalkanoates in biomedical applications. Polym. Rev. https://doi.org/10.1080/15583724.2022.2076693 (2022).

  • Khan, A. et al. Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review. Environ. Sci. Pollut. Res. 24, 23471–23487 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Deguine, J. P., Ferron, P. & Russell, D. Sustainable pest management for cotton production. A review. Agron. Sustain. Dev. 28, 113–137 (2008).

    Article 

    Google Scholar
     

  • Xiao, Y. & Wu, K. Recent progress on the interaction between insects and Bacillus thuringiensis crops. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2018.0316 (2019).

  • Veres, A. et al. An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: alternatives in major cropping systems. Environ. Sci. Pollut. Res. 27, 29867–29899 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Serrano-Ruiz, H., Martin-Closas, L. & Pelacho, A. M. Biodegradable plastic mulches: impact on the agricultural biotic environment. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141228 (2021).

  • Bi, S. et al. Biodegradable polyester coated mulch paper for controlled release of fertilizer. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.126348 (2021).

  • Dai, J., Kong, X., Zhang, D., Li, W. & Dong, H. Technologies and theoretical basis of light and simplified cotton cultivation in China. Field Crops Res. 214, 142–148 (2017).

    Article 

    Google Scholar
     

  • Felgueiras, C., Azoia, N. G., Gonçalves, C., Gama, M. & Dourado, F. Trends on the cellulose-based textiles: raw materials and technologies. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2021.608826 (2021).

  • Biodiversity in Bamboo Forests: A Policy Perspective for Long Term Sustainability (International Network for Bamboo and Rattan, 2010).

  • Song, X. et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ. Rev. 19, 418–428 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sayyed, A. J., Deshmukh, N. A. & Pinjari, D. V. A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26, 2913–2940 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Beckwith, A. L., Borenstein, J. T. & Velásquez-García, L. F. Tunable plant-based materials via in vitro cell culture using a Zinnia elegans model. J. Clean. Prod. 288, 125571 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Koç, E. & Kaplan, E. An investigation on energy consumption in yarn production with special reference to ring spinning. Fibres Text. East. Eur. 15, 18–24 (2007).


    Google Scholar
     

  • Yin, R., Tao, X. & Jasper, W. A theoretical model to investigate the performance of cellulose yarns constrained to lie on a moving solid cylinder. Cellulose 27, 9683–9698 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, K., Tao, X. M., Xu, B. G. & Lam, J. Structure and properties of low twist short-staple singles ring spun yarns. Text. Res. J. 77, 675–685 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ying, G. et al. Investigation and evaluation on fine Upland cotton blend yarns made by the modified ring spinning system. Text. Res. J. 85, 1355–1366 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Xue, J., Wu, T., Dai, Y. & Xia, Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119, 5298–5415 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hasanbeigi, A. Energy-Efficiency Improvement Opportunities for the Textile Industry (Lawrence Berkeley National Laboratory, 2010).

  • Münkel, A., Gloy, Y. S. & Gries, T. Development and testing of a relay nozzle concept for air-jet weaving. IOP Conf. Seri. Mate. Sci. Eng. 254, 132003–132008 (2017).

    Article 

    Google Scholar
     

  • Jordan, J. V., Kemper, M., Renkens, W. & Gloy, Y.-S. Magnetic weft insertion for weaving machines. Text. Res. J. 88, 1677–1685 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xiang, W. et al. Foam processing of fibers as a sustainable alternative to wet-laying: fiber web properties and cause–effect relations. ACS Sustain. Chem. Eng. 6, 14423–14431 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Du, C., Meng, Z., Sun, Y. & Yu, J. Optimal design of the horn gear for rotary three-dimensional braiding machine. J. Text. Inst. https://doi.org/10.1080/00405000.2020.1716530 (2020).

  • Yin, R. et al. Cleaner production of mulberry spun silk yarns via a shortened and gassing-free production route. J. Clean. Prod. 278, 123690 (2021).

    Article 

    Google Scholar
     

  • Jiang, G., Zhou, M., Zheng, B., Zheng, P. & Liu, H. Research progress of green and low-carbon knitting technology.J. Text.Res. 43, 67–73 (2022).


    Google Scholar
     

  • Lozano, L. M. et al. Optical engineering of polymer materials and composites for simultaneous color and thermal management. Opt. Mater. Express 9, 1990–2005 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ruiz-Clavijo, A. et al. Engineering a full gamut of structural colors in all-dielectric mesoporous network metamaterials. ACS Photon. 5, 2120–2128 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Banchero, M. Recent advances in supercritical fluid dyeing. Color. Technol. 136, 317–335 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hu, E., Shang, S., Tao, X., Jiang, S. & Chiu, K.-L. Minimizing freshwater consumption in the wash-off step in textile reactive dyeing by catalytic ozonation with carbon aerogel hosted bimetallic catalyst. Polymers 10, 193 (2018).

    Article 

    Google Scholar
     

  • Hu, E., Shang, S., Tao, X.-M., Jiang, S. & Chiu, K.-L. Regeneration and reuse of highly polluting textile dyeing effluents through catalytic ozonation with carbon aerogel catalysts. J. Clean. Prod. 137, 1055–1065 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Song, Y. et al. Green and efficient inkjet printing of cotton fabrics using reactive dye@copolymer nanospheres. ACS Appl. Mater. Interfaces 12, 45281–45295 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Eid, B. M. & Ibrahim, N. A. Recent developments in sustainable finishing of cellulosic textiles employing biotechnology. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2020.124701 (2021).

  • Udhayamarthandan, S. & Srinivasan, J. Integrated enzymatic and chemical treatment for single-stage preparation of cotton fabrics. Text. Res. J. 89, 3937–3948 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nambela, L., Haule, L. V. & Mgani, Q. A review on source, chemistry, green synthesis and application of textile colorants. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2019.119036 (2020).

  • Phan, K. et al. Non-food applications of natural dyes extracted from agro-food residues: a critical review. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.126920 (2021).

  • Boriskina, S. V. Optics on the go. Opt. Photon. News 28, 34–41 (2017).


    Google Scholar
     

  • Gauvreau, B. et al. Color-changing and color-tunable photonic bandgap fiber textiles. Opt. Express 16, 15677–15693 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Hasanbeigi, A. & Price, L. A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry. J. Clean. Prod. 95, 30–44 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Muensterman, D. J. et al. Disposition of fluorine on new firefighter turnout gear. Environ. Sci. Technol. 56, 974–983 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hill, P. J., Taylor, M., Goswami, P. & Blackburn, R. S. Substitution of PFAS chemistry in outdoor apparel and the impact on repellency performance. Chemosphere 181, 500–507 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Konstantinou, I. K. & Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Yaseen, D. & Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int. J. Environ. Sci. Technol. 16, 1193–1226 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sondhi, S. in Sustainable Technologies for Fashion and Textiles (ed. Nayak, R.) 327–341 (Elsevier, 2020).

  • Wang, B., Su, H. & Zhang, B. Hydrodynamic cavitation as a promising route for wastewater treatment—a review. Chem. Eng. J. 412, 128685 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bhatia, D., Sharma, N. R., Singh, J. & Kanwar, R. S. Biological methods for textile dye removal from wastewater: a review. Crit. Rev. Environ. Sci. Technol. 47, 1836–1876 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Götz, T. & Tholen, L. Stock model based bottom-up accounting for washing machines: worldwide energy, water and greenhouse gas saving potentials 2010–2030. Tenside Surfactants Deterg. 53, 410–416 (2016).

    Article 

    Google Scholar
     

  • Koohsaryan, E., Anbia, M. & Maghsoodlu, M. Application of zeolites as non-phosphate detergent builders: a review. J. Environ. Chem. Eng. https://doi.org/10.1016/j.jece.2020.104287 (2020).

  • Joondan, N., Angundhooa, H. D., Bhowon, M. G., Caumul, P. & Laulloo, S. J. Detergent properties of coconut oil derived N-acyl prolinate surfactant and the in silico studies on its effectiveness against SARS-CoV-2 (COVID-19). Tenside Surfactants Deterg. 57, 361–374 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Farias, C. B. B. et al. Production of green surfactants: market prospects. Electron. J. Biotechnol. 51, 28–39 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jimoh, A. A. & Lin, J. Biosurfactant: a new frontier for greener technology and environmental sustainability. Ecotoxicol. Environ. Safety https://doi.org/10.1016/j.ecoenv.2019.109607 (2019).

  • Nondurable Goods: Product-Specific Data (EPA, 2021); https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/nondurable-goods-product-specific-data

  • Ashby, M. F. Materials and Sustainable Development (Butterworth-Heinemann, 2016).

  • A New Textiles Economy: Redesigning Fashion’s Future (Ellen Macarthur Foundation, 2017); https://www.ellenmacarthurfoundation.org/publications/a-new-textiles-economy-redesigning-fashions-future

  • Esteve-Turrillas, F. A. & de la Guardia, M. Environmental impact of Recover cotton in textile industry. Resour. Conserv. Recycl. 116, 107–115 (2017).

    Article 

    Google Scholar
     

  • Beltrán, F. R., Lorenzo, V., Acosta, J., de la Orden, M. U. & Martínez Urreaga, J. Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic acid). .J. Environ. Manage. 216, 25–31 (2018).

  • Beltrán, F. R., Infante, C., de la Orden, M. U. & Martínez Urreaga, J. Mechanical recycling of poly(lactic acid): evaluation of a chain extender and a peroxide as additives for upgrading the recycled plastic. J. Clean. Prod. 219, 46–56 (2019).

    Article 

    Google Scholar
     

  • Yousef, S. et al. A new strategy for using textile waste as a sustainable source of recovered cotton. Resour. Conserv. Recycl. 145, 359–369 (2019).

    Article 

    Google Scholar
     

  • Haslinger, S., Hummel, M., Anghelescu-Hakala, A., Määttänen, M. & Sixta, H. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manage. 97, 88–96 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Quartinello, F. et al. Highly selective enzymatic recovery of building blocks from wool–cotton–polyester textile waste blends. Polymers 10, 1107 (2018).

    Article 

    Google Scholar
     

  • Lv, F. et al. Recycling of waste nylon 6/spandex blended fabrics by melt processing. Composites B 77, 232–237 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ma, Z. et al. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules 12, 3265–3274 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sandvik, I. M. & Stubbs, W. Circular fashion supply chain through textile-to-textile recycling. J. Fashion Mark. Manage. 23, 366–381 (2019).

    Article 

    Google Scholar
     

  • Sodhi, M. & Knight, W. A. Product design for disassembly and bulk recycling. CIRP Ann. Manuf. Technol. 47, 115–118 (1998).

    Article 

    Google Scholar
     

  • Next Post

    Aurora strongly contributes to the sustainable future of Vietnam’s textile industry with an eco industrial park orientation

    Aurora IP Aurora IP HANOI, Vietnam, Dec. 26, 2022 (Globe NEWSWIRE) — As a portion of the work to reach internet-zero emissions by 2050, Vietnam is encouraging builders to establish eco-industrial parks and transition from conventional to ecological kinds.  In July this calendar year, Vietnam Countrywide Tactic on Local weather […]
    Aurora strongly contributes to the sustainable future of Vietnam’s textile industry with an eco industrial park orientation

    You May Like